Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10642, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724565

RESUMO

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Assuntos
Proliferação de Células , Cetuximab , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt , beta Catenina , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cetuximab/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Prognóstico , Antineoplásicos Imunológicos/farmacologia
2.
Cell Cycle ; 22(17): 1807-1826, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37587724

RESUMO

Background: Cancer-associated fibroblast (CAF) exosomal miRNAs have gradually a hot spot in cancer therapy. This study mainly explores the effect of CAF-derived exosomal miR-29b-1-5p on gastric cancer (GC) cells.Methods: CAFs and exosomes were identified by Western blot and transmission electron microscopy. CAF-derived exosomes-GC cells co-culture systems were constructed. Effects of CAF-derived exosomal miR-29b-1-5p on GC cells were determined by cell counting kit-8, flow cytometry, wound healing, Transwell assays and Western blot. The relationship between miR-29b-1-5p and immunoglobulin domain-containing 1 (VSIG1) was assessed by TargetScan, dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments. The interaction between VSIG1 and zonula occluden-1 (ZO-1) was detected by co-immunoprecipitation. Expressions of miR-29b-1-5p, VSIG1 and ZO-1 were determined by quantitative real-time PCR. Vascular mimicry (VM) was detected using immunohistochemistry and tube formation assays. Rescue experiments and xenograft tumor assays were used to further determine the effect of CAF-derived exosomal miR-29b-1-5p/VSIG1 on GC.Results: VM structure, upregulation of miR-29b-1-5p, and downregulation of VSIG1 and ZO-1 were shown in GC tissues. MiR-29b-1-5p targeted VSIG1, which interacted with ZO-1. CAF-derived exosomal miR-29b-1-5p inhibitor suppressed the viability, migration, invasion and VM formation, but promoted the apoptosis of GC cells. MiR-29b-1-5p inhibitor increased levels of VSIG1, ZO-1 and E-cadherin, whilst decreasing levels of VE-cadherin, N-cadherin and Vimentin in vitro and in vivo, which however was partially reversed by shVSIG1. Downregulation of CAF-derived exosomal miR-29b-1-5p impeded GC tumorigenesis and VM structure in vivo by upregulating VSIG1/ZO-1 expression.Conclusion: Downregulation of CAF-derived exosomal miR-29b-1-5p inhibits GC progression via VSIG1/ZO-1 axis.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Junções Íntimas , Regulação para Baixo/genética , Apoptose/genética , MicroRNAs/genética , Domínios de Imunoglobulina , Proliferação de Células , Linhagem Celular Tumoral
3.
Front Immunol ; 12: 702615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322132

RESUMO

Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan-Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.


Assuntos
Biomarcadores Tumorais/imunologia , Receptores CXCR4 , Neoplasias Gástricas/imunologia , Adulto , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transcriptoma
4.
Front Pharmacol ; 11: 514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425778

RESUMO

Acetaminophen (APAP) overdose is the main cause of acute liver failure. Apigenin (API) is a natural dietary flavonol with high antioxidant capacity. Herein, we investigated protection by API against APAP-induced liver injury in mice, and explored the potential mechanism. Cell viability assays and mice were used to evaluate the effects of API against APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to determine the signalling pathways affected by API. Analysis of mouse serum levels of alanine/aspartate aminotransferase (ALT/AST), malondialdehyde (MDA), liver myeloperoxidase (MPO) activity, glutathione (GSH), and reactive oxygen species (ROS) revealed that API (80 mg/kg) owned protective effect on APAP-induced liver injury. Meanwhile, API ameliorated the decreased cell viability in L-02 cells incubated by APAP with a dose dependent. Furthermore, API promoted SIRT1 expression and deacetylated p53. Western blotting showed that API promoted APAP-induced autophagy, activated the NRF2 pathway, and inhibited the transcriptional activation of nuclear p65 in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 reduced protection by API against APAP-induced hepatotoxicity. Molecular docking results indicate potential interaction between API and SIRT1. API prevents APAP-induced liver injury by regulating the SIRT1-p53 axis, thereby promoting APAP-induced autophagy and ameliorating APAP-induced inflammatory responses and oxidative stress injury.

5.
Front Pharmacol ; 11: 162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184730

RESUMO

Acetaminophen (APAP) overdose is a leading cause of drug-induced acute liver failure in clinical and hospital settings. Fisetin (FST) is a phenolic compound derived from natural products such as fruit and vegetables. Our research investigated the protective mechanisms of FST in APAP-induced hepatic injury in vitro and vivo. Assessment of mouse serum levels of alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) demonstrated the protective effects of FST toward APAP-induced liver injury. FST also reversed an APAP-induced decrease in mouse L-02 cell line viability. Our results also showed that FST significantly promoted APAP-induced autophagy and inhibited inflammasome activation both in vivo and in vitro. We also found that silencing ATG5, using si-ATG5, reduced the protective effects of FST against APAP-induced hepatotoxicity and reversed the effects on autophagy. Finally, we used the autophagy inhibitor, 3-methyladenine (3-MA) to validate the involvement of autophagy in FST against APAP-induced hepatotoxicity in vitro. We demonstrated that FST prevented APAP-induced hepatotoxicity by increasing ATG5 expression, thereby promoting autophagy and inhibiting inflammasome activation.

6.
Chem Biol Interact ; 291: 111-119, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29883724

RESUMO

Alisol A 24-acetate (AA), a natural triterpenoid isolated from the traditional Chinese medicine Rhizoma Alismatis, has various therapeutic effects. We investigated the anti-nonalcoholic steatohepatitis (NASH) effect of AA and its underlying mechanisms in vitro and in vivo. C57BL/6 mice were fed a methionine and choline-deficient (MCD) diet for 4 weeks to induce NASH. The mice were simultaneously treated with a daily dose of AA (15, 30, and 60 mg kg-1, ig) for 4 weeks. On the last day, the animals were sacrificed and plasma and liver tissue were collected. Serum and liver tissue biochemical analyses and histological observation were performed. The human hepatic stellate cell line LX-2 was used to build NASH models by culturing with conditioned medium from WRL-68 liver cells after exposure to MCD medium in vitro. Liver oxidative stress and inflammatory indices and autophagy markers were examined. The results showed that AA suppressed reactive oxygen species (ROS) and inflammation in a NASH mouse model and inhibited the expression of inflammatory cytokines and ROS in LX-2 cells in MCD medium. Furthermore, we found AA stimulated autophagy in mice liver and LX-2, which could be the underlying mechanism of AA in NASH. To further investigate the role of autophagy in LX-2 cells, we found that AA regulated autophagy via the AMPK/mTOR/ULK1 pathway and dorsomorphin, a selective AMPK inhibitor, led to the suppression of AA-induced autophagy. Taken together, our results indicate that AA could be a possible therapy for NASH by inhibiting oxidative stress and stimulating autophagy.


Assuntos
Adenilato Quinase/metabolismo , Autofagia , Colestenonas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Colestenonas/química , Colestenonas/farmacologia , Colina , Dieta , Modelos Animais de Doenças , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...